

Presentation

Powercorp Group

Powercorp Operations Pty Ltd
Powercorp R&D Pty Ltd
Powercorp Alaska LLC

Dennis Meiners

Agenda

1. About Us

2. Products and Services

3. Projects

Key Capabilities

- Power Station Control (100kw-30 MW)
- Renewable Diesel Integration
- Power Electronics Solutions
- Wind Farm

Where is Powercorp?

Projects

The Team

Training and Testing Facilities

Power Systems
Test Site

Power Electronics Engineering Facility

Control Systems
Engineering Facility

Alaska

In Common?

Northern Territory

Darwin

Tropical/Desert

Crocodiles

Remote Areas

Sister Cities

Extreme Climates Arctic

Friendly Wildlife

Bears

Anchorage

Wind-Diesel different from grid ent power systems connected wind applications

- Communities
 - Smaller, more remote
 - Have limited infrastructure and equipment
 - Limited technical personnel
- Wind Turbines
 - Smaller
 - Less developed technically
 - More expensive to install and operate
- Wind-Diesel Integration Not Yet Mature
 - Utility integration issues not fully resolved
 - More project experience needed to optimize technology and economics

- Markets are Fragmented
- Installations are smaller and more remote
- Infrastructure is growing
- Access to equipment is less limited
- Wind turbines
- Success based on diesel controls
- Solve problems of remote powerstation
- Push toward high penetration

Operating Experience of 15 Years

50+ IPS Multiple Diesel Systems

Maningrida – SNAPSHOT

IPS

- 2 hours flight by light aircraft from Darwin.
- Cut off in the wet season.
- Maximum demand 1MW.
- Population 800 people.
- Semiskilled operators

Maningrida – PROBLEMS

- No historical data logging.
- Manual synchronization leading to alternator damage.
- Lack of scheduled servicing.
- Poor load-sharing and VAr sharing.
- Poor load factor 60%.
- Poor fuel efficiency <10 kWhr/gal.

Maningrida Solution

Intelligent Power System (IPS) Technology

Results: Web Reporting

Results:

- Data logging 100 msec.
- Automatic Station Operation.
- Remote Access.
- Scheduling of gensets, with service warnings
- Improved load factor 75% 85%
- Improved fuel efficiency > 12.5 kWhr/gallon

Results: Service Integration

Wind-Diesel System Elements

Station Management:

Automation, Integration, Communication

Wind Turbines

Power Output limit or Start/Stop

Spinning Reserve

Dynamic Grid Interface to connect variable loads to power system

Controllable Loads

Demand Managed Devices to maximise use of available wind

Objectives

- Utility Quality
- Maintain Diesel Loadings
- Maximise Fuel Savings
- Station Heating from Wind

Wind Diesel Projects

Windy Hill

Esperance

- Population: 12,500
- Diesel & Gas Turbines (30 MW)
- Two wind farms (9 V-27, 6 E-40)
- 22% Electricity by Wind

Denham

- Pop: 800
- Ave load 400 kWe
- 3@ E-30
- 250 kW LLD
- 100 kW DGI
- 36% of electrical energy displaced

Denham

- 1 Estimated Wind Farm Output from available wind without LLD
- 2 Estimated Additional Wind Farm Output accreditable to Low Load Diesel (LLD)

Exmouth

Cocos, Rottnest, Bremer Bay

IPS Wind/Diesel Mawson Antarctica

Mawson Power System

- Station Management System SMS
- Generator Supervisory Systems GSS (4)
- Feeder Management Systems FMS (4)
- Enercon E-30 Wind Turbines
- Electrical boilers with DGI for heating

Mawson IPS Control Room

Wind Turbine Detail Page

Mawson Outcomes

- High penetration wind diesel system: average 60% wind penetration
- IPS control system operates Wind diesel system in fully automatic mode
- Electric heaters/DGI controlled by IPS
- Fuel savings of approx. 140,000 gal/a
- Remote visualisation and trending

Pathway to Wind/Diesel TELLIGENT POWER SYSTEMS

Generation Control

- Control of gensets, feeders, and demand devices
- Gas Turbines
- Wind/Diesel Systems
- Diesel/Hydro
- Diesel/Battery/PV

Power Station Management

- Common Programming
- Standard Proven Controls
- Remote Monitoring
- Remote Access
- Access to Service Support Network through SCADA

Power Quality Solutions

- Dynamic Grid Interface™
- PowerStore™
- Low Load Diesel™